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J .  Phys. A: Math. Gen. 20 (1987) 2781-2803. Printed in the U K  

Coordinate systems and analytic expansions for three-body 
atomic wavefunctions: 111. Derivative continuity via solutions to 
Laplace’s equation 

J E Gottschalk and E N Maslen 
Department of Physics, University of Western Australia, Nedlands 6009, Western Australia, 
Australia 

Received 22 July 1986 

Abstract. Terms in a few-particle wavefunction, written as an expansion of homogeneous 
functions, are derived by a method which resembles standard techniques for solving 
differential equations in one variable. The addition of solutions to the homogeneous 
equation, i.e. Laplace’s equation, converts a particular solution to a physically acceptable 
form consistent with the boundary conditions. Some earlier workers had derived expansions 
which, although satisfying the differential equation, were not consistent with those boundary 
conditions. A study of these inconsistencies assisted the development of this simpler 
method for obtaining the terms in the wavefunction in their reduced form. The power of 
the method is demonstrated by its application to nsms ’ S  and npmp ‘ S  helium wavefunc- 
tions up to and including terms of fourth order in the hyper-radius. 

1. Introduction 

An expansion containing logarithmic functions which formally solves the Schrodinger 
equation for a system of three particles with Coulombic potentials was proposed by 
Bartlett (1937) and Fock (1954,1958). Fock’s derivation involved the use of hyper- 
spherical coordinates ( r ,  a, e)  defined by 

r = ( r i +  r:)’” tan(a/2)  = r 2 / r ,  cos e = r ,  r 2 / ( r 1 r 2 ) .  

The wavefunction, expanded about r = 0, is 

Leray (1982a, b, 1983, 1984) and Morgan (1986) have shown the necessity of this 
expansion. The hyperspherical expansion (1) has been generalised to a system of N 
particles and states of any symmetry, and applies to a wide class of potentials (Ermolaev 
1958, Demkov and Ermolaev 1959, Tulub 1969, Tulub er a1 1971). For any energy 
there is an infinite set of Fock expansions, convergent for r finite. The physical 
boundary conditions must be applied to select the physically acceptable solution from 
that infinite set. 

of (1) are determined by substituting the expansion into the 
Schrodinger equation, producing a set of coupled partial differential equations. These 
are solved in order of increasing k and decreasing p .  A common method of solution 

The coefficients 
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involves expanding 'Pkp(a, e)  as a series of hyperspherical harmonics ( H H ) .  This 
produces simple algebraic recurrence equations for the expansion coefficients 
(Ermolaev 1961, David 1975, Feagin et a1 1985), but it generates the wavefunction in 
the form of infinite series of H H .  It is more desirable to determine the V k ,  in their 
reduced (closed) form. 

Techniques for obtaining some 'Pkp in closed form are established by Abbott and 
Maslen (1987, hereafter referred to as I ) .  These apply straightforwardly to terms with 
the highest value of p for a given k, such as 'Plo, 'P21, 'P31 and 'P4*. The resulting 
functions are polynomials in r l ,  r2 and r12. For the term 'P20, compaction of the 
hyperspherical expansion for nsms IS states described in I yields an expansion in 
spherical polar coordinates ( r l ,  r2, e). Clearly it is more efficient to commence with 
an expansion in spherical polar coordinates than with hyperspherical coordinates 
(Pluvinage 1982). Compaction of the spherical polar coordinate expansion is more 
straightforward. It yields V20 in terms of polynomial, rational, logarithmic and inverse 
trigonometric functions of r l r  r2 and r12 in addition to four Lobachevskiy's functions 
(Pluvinage 1985, Gottschalk et a1 1987, hereafter referred to as 11). For nsms 3S states 

is comparable in complexity to the nsms 'S  V2,, term (Pluvinage 1982). The 
spherical polar coordinate expansion has been partly compacted (Gottschalk 1986) 
using the method for 'PZo reported in 11. The results indicate that the fully reduced 
expression will have a similar form. 

Although this technique may be extended to doubly excited states the procedure 
is still lengthy. The extension to higher k may be unnecessarily complicated. In this 
paper previous formal solutions including both Laurent series and spherical polar 
expansions are studied. Although these series without logarithmic terms cannot rep- 
resent the physical solution (Bartlett 1937) they may nevertheless satisfy the Schrodinger 
equation. The boundary conditions required for physical solutions not satisfied initially 
are accommodated by adding logarithmic solutions to Laplace's equation. The com- 
plete solution is achieved more directly, providing an efficient method for obtaining 
the Fock coefficients in closed form. Because the major part of the wavefunction is 
generated by the kinetic energy operator, rather than the potential, the method should 
also apply to non-Coulombic potentials, as well as to other atoms and molecules. 

2. Solutions of the Schrodinger equation 

It is emphasised that, as with any physical problem, solving the differential equation 
does not describe atomic and molecular systems completely. The physically acceptable 
solution is chosen from the infinite ensemble of solutions by applying the physical 
boundary conditions. For the non-relativistic approximation these boundary conditions 
have been determined by Kat0 (1951, 1957). The relevant conditions are (i) the 
wavefunction V is finite and continuous everywhere, (i i)  the first derivatives are 
continuous everywhere except at the cusps (particle coalescences) and ( i i i )  V and its 
gradient must be square integrable. 

Initially a system of three particles interacting via the Coulomb interaction is studied 
as an archetypal case. The requirements for satisfying the boundary conditions are 
given in a later section. For convenience one of the particles is chosen to be infinitely 
massive while the others (particles 1 and 2) have finite and equal masses. The length 
r, is the distance from the origin to particle i and 8 is the angle between rl and r2. 
Atomic units are used throughout. 
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The Schrodinger equation for this system is 

(-;A+ V)'€'=E'€' ( 2 )  

where A=V:+V: .  The potential V is specified incompletely at this stage, but it is 
assumed to be not too singular. The exact requirements become apparent later. To 
solve ( 2 )  the eigenfunction is expanded as 

ac 
'€'= Q k  (3) 

k s k '  

where Q k  are homogeneous functions of degree k in the hyper-radius r. Since '€' is 
finite at the origin k ' 2  0; k' is also even ( I ) .  The bold notation denotes a homogeneous 
function and is consistent with that in I and 11. A homogeneous function of degree 
A,  H,,(r) ,  can be written as 

H A ( f ) =  r"H,(u) 

where r is the hyper-radius, r is an n-dimensional vector and U is the corresponding 
unit vector. Initially the q k  are represented as series of powers of the independent 
coordinates, but this is easily generalised, since logarithmic functions are homogeneous 
of degree 0. As shown in 0 4 it is helpful to include components with logarithmic 
character in the initial form of Q k .  Substituting (3) into ( 2 )  gives 

A w k  = 2 V ~ k r , _ l - 2 E ~ k - 2  k s k ' + 2  (4) 
to be solved in order of increasing k. The Fock recurrence relations are now obtained 
by setting 

The expansions studied in this section are for nsms IS ( k '  = 0 )  unless stated otherwise. 
For these states Bartlett (1937) gave the first two terms: 

WO= 1 Q, = -Z( rl + r2)  + r I 2 / 2  
where 

z z  1 v=----+- 
rl r2 r12 

2.1. Earlier calculations 

In some cases solutions to the Schrodinger equation have been derived using polynomial 
expansions which do not satisfy the boundary conditions. The first formal solution of 
Q2, due to Pluvinage (1950), was expressed in the coordinates 

y = cos 6. P I 2  = fr12 U = f ( 2 r 2  - r:2)1'2 
U has a useful geometrical interpretation, 2 u  being the length of the trapezium formed 
by rl and r2 (figure 1). 

Q2 = Z2 rl r2 - Z ( r I + r2 ) p - f ( 2 E - 4 2  - 1 ) P :2 + a2 Y2 I + x2  ( U, p I 2 ,  y 1. (6) 
Note that there are errors in Pluvinage's equation (4). Substituting this into (4) gives 

Pluvinage simplified the equation for Y2 by setting 
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Figure 1. Interparticle coordinates showing the trapezium formed by rl and r2.  

which may be compared to equation (82) of I. Equation (7 )  was solved by expanding 
both sides into a series of Legendre polynomials P,,(y) and the dimensionless ratio 
( p 1 2 / u ) i  where i, n S O  and p 1 2 6 u .  Pluvinage summed this series to yield the result, 
valid for all pI2, U and y, 

This function solves the Schrodinger equation for all space except the singular points 
of x2. Throughout this paper Ykl denote the unnormalised hyperspherical harmonics 
( I ) .  The ones used here are listed in table 1. Noting that 

1 - y r12(2r2 - r : 2 ) 1 / 2  - r:+ r i  
I +  y r12(2r2-r:2)1/2+r:-r: 
-- - 

it has since been found that the terms in Pluvinage's solution are included in the 
physical solution ( I I ) ,  but with different multipliers. Pluvinage noted that his W2 had 
logarithmic singularities at rl * rI2  = r2 and rl + r2 = rI2. Because of the failure to satisfy 
the boundary condition that atomic and molecular wavefunctions are finite (Kato 1957) 
(6) and (8) cannot describe the physical solution. Pluvinage noted that the singularity 
cannot be removed by adding a well behaved solution to Laplace's equation, Ah = 0. 

Table 1. Separable finite series solutions to Laplace's equation. N k ,  is the normalisation 
constant for Y k , .  

~~ 

k l  n 3 N : ,  Unnormalised Y , , ( r , ,  r2,  r I 2 )  Relation to Qi , (  r l ,  r2 ,  r I 2 )  

0 0  1 1 
2 0  1 2 (  r: - r : )  
2 1  4 r2  - r : ,  
4 0  1 3 r 4 -  16r:r: 
4 1  I 4( r: - r ; ) (  r' - rT2) 3 

4 2  8 A( r 2 -  r :2)2  - 2 4 4  

0 0  2 cos &/sin a ( r : -  r : ) / r l r 2  
2 0  2 cos(2a )/sin a ( r 4 - 8 r : r ; ) / r , r 2  
2 1  4 cos e cos a (  1 + 2 sin' a ) / s in2  a ( r 2 -  r : 2 ) ( r :  - r i ) ( r 4 + 8 r : r : ) / 2 r : 4  
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However, the singularity can be removed when one relaxes the restriction that the 
solution is well behaved everywhere. The solutions required are derived in § 3. 

Kinoshita (1957) studied the series 

where s = rl + r2, p = rI2/s, q = ( r 2  - r 1 ) / r I 2 .  Note that since only s has the dimension 
of length, one has the correspondence with the Fock equation, identifying 1 with k. 
Substituting this expansion into the Schrodinger equation yields a recurrence equation 
for the coefficients C,,,. Scherr (1979) studied this more closely, achieving a partial 
summation of the expansion (9). He established the result that C,,, = 0 for n > m. 
For 1 = 2 Scherr examined 

*2 = *2,odd + *2.even 

where 
2 @ + l  2 v  

*2,odd= s2 c 2 2 ~ + 1 2 v p  4 
@U 

and 
2 &  2 v  

*2,e\en = s2 C C 2 2 p 2 v ~  q 
@U 

For symmetric states q occurs only to even powers. Scherr obtained 

where U’ = 1 - p 2 + p 2 q 2 ,  r = q ( l  - A ) / ( u + A )  and A’= 1 - p 2 .  Transforming to interpar- 
ticle coordinates yields 

Scherr noted that this contains logarithmic singularities, which he concluded must 
cancel with an equivalent singularity in W2,even, but did not derive a compact expression 
for this term. 

Hylleraas (1956, 1960, reproduced in Hylleraas 1968) solved the equation for W2 
(4) using an expansion in the spherical polar coordinates ( r l ,  r2 ,  0 )  which, unlike the 
work of Pluvinage (1950) and Kinoshita (1957), contained logarithmic terms explicitly. 
Unlike Fock’s In r, the terms used by Hylleraas were not introduced to satisfy the 
boundary conditions and are not necessary to solve the equations. They were obtained 
by an integration procedure (Hylleraas 1956). 

Hylleraas (1960) set 

** = P2 - &za2 
where P2 is a homogeneous polynomial of degree 2 in rl ,  r2 and r I 2  and, from (4), 

A a 2  = 6r12( l /  rl  + 1 /  r 2 )  + 12( rl + r 2 ) /  rI2.  
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This was solved by expanding both sides as a series in 
r;r:P/(cos e). 

The expansion of r I 2  is region dependent. After summing the series for aZ a region- 
dependent expression, valid for rl > r2, 

Y~ = PZ +fZr, rZ - $ ( r ,  + rZ)r12 + a yzO+ p~~~ - ~ Z Y , ,  In( rl + r2 + r I 2 )  

+ t z Y Z o  In( rl - rz + r I 2 )  ( 1 1 )  
was obtained. The corresponding expression valid for r, < r2 is derived from this by 
interchanging rl and rZ. The presence of the artificial boundary between the domains 
of validity of the two expansions requires an examination of the continuity of V and 
its derivatives. The wavefunction should be continuous everywhere, with first deriva- 
tives continuous except at the cusps. Although Hylleraas’s solution ( 1  1 )  is continuous 
it has a discontinuous derivative at rl = r2 .  It is also singular at rl - r2* r I 2  = 0. 

2.2. Power series solutions for  spherical polar coordinates 

Work involving power series with no explicit logarithmic terms is described by Pluvinage 
(1950), Kinoshita (1957) and Scherr (1979). This shows that series solutions for the 
Schrodinger equation in spherical polar coordinates may be found to second order in 
r at least. Solutions that are series of 

r;r:P/(cos e )  (12) 
have been examined by Newman (1973) and Davis and Maslen (1982). These studies 
correspond to the nsms IS states of helium in that the expressions have non-zero Yo. 

In a more detailed examination of expansions using (12) by Gottschalk and Maslen 
(1985), states of arbitrary symmetry and general potentials are considered. To ensure 
a normalisable expansion at the origin using (12) it is necessary to use a region- 
dependent expression 

To satisfy the boundary conditions at the origin 1 5  0, j 5 I and k = i + j 5 0 in both 
series. This is equivalent to the hyperspherical expansion 

(Fock’s expansion ( 1 )  with p = 0). I t  is the process of expanding r = ( r i +  ri)1’2 using 
the binomial theorem which differentiates between the regions r ,  > r2 and rI < r2.  
Symmetric or antisymmetric functions may be produced by requiring that 

c,,, = * C L,. 
Straightforward substitution of (13)  into the Schrodinger equation leads to recurrence 
equations for C,/ and Chi. These can be solved in order of increasing k = i + j ,  yielding 

Ck-I-Zn-1 / + 2 n + l  I 

( - l ) T (  n + I - k / 2 + + ) r (  n - k / 2 )  
r(n + + ) 2 r ( n  + 1+2) 

x R( k, l, 2r + 1 )  n 8 0  (15a)  

( - l ) T (  t + f ) r (  t + I + 1) i - - 
r = O  r(t+ i - k / 2 + ; ) r ( t - k / 2 )  
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and 

( - f - k / 2 ) , ,  ( I  - k / 2 ) ,  ( -  1 ) "  
( I  + S),n ! 

( - l ) ' r (  n - f  - k / 2 ) r (  n + 1 - k / 2 )  
2 r (  n + + 1)n ! ck - 111 - C k - l - 2 "  / + 2 n  / = 

n s l  (156) 
n-1  zo r( t + I - k / 2  + l )I-( t - k / 2  + f )  

(- 1 ) '  r ( t + i )r ( t + I + ;) R ( k ,  1 , 2 t + 2 )  

where 

is the Pochhammer symbol and 

R ( k ,  1, g )  = ( Vop- E ) c k - / - g  l i g - 2  I .  

V0,C,, represents the effect of the potential operator acting on the expansion ( 1 3 ) .  
The only restriction on V is that it is less singular than r;' or r;' at the origin. 

These equations d o  not specify the coefficients C,-,,,. The significance of this, 
shown in the next section, is that c k - , / /  multiplies a solution to Laplace's equation. 
Although equations (15) may be used to construct a series solution to the Schrodinger 
equation, the resulting function and its derivatives will, in general, be discontinuous. 
Continuity can be satisfied in part by using equations ( 1 4 ) - ( 1 6 )  in Gottschalk and  
Maslen (1985)  (see also 11, equations (A3) and ( A 4 ) ) .  However, for k = 2 1 + 2 n ,  
n = 0 ,  1 , 2 ,  . . , , this cannot be achieved for the general asymmetric series, indicating 
the breakdown of the validity of a power series (13) representing the physical solution. 
Ensuring continuity of the function and its first derivative for rl = r2 also precludes 
infinities elsewhere in the wavefunction (although this is not rigorously proven here). 
Note that the eigenfunctions have discontinuous derivatives (cusps) at the Coulomb 
singular points but, as these are not regions or lines of discontinuity, the procedure is 
justified. 

2.3. Expansions in hyperspherical coordinates 

The failure of expansion ( 1 3 )  is not obvious in the hyperspherical approach. As much 
work in the field is based on hyperspherical coordinates it is worth examining this 
matter in some detail. The argument used here, given originally by Bartlett ( 1 9 3 7 ) ,  
shows that the helium ground state cannot be represented by series of positive powers 
of the hyper-radius. This is also shown by Morgan (1978)  in dismissing the Kinoshita 
expansion ( 9 ) .  

Substitution of ( 1 4 )  into the Schrodinger equation ( 2 )  yields 

[A2-  k ( k + 4 ) ] q k  = - 2 v q k - 1 + 2 E q k - 2  

where A' is the generalised angular momentum operator ( I )  and, in this case, 

2 2  1 

rl 1 2  r12 
v =  

From the evaluation of q0 and 9, the second-order terms are determined by 

[A'- 121'4'2 = - 2  V V l +  2E'PO. ( 1 6 )  
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This is solved by expansion of 'Pk into hyperspherical harmonics Ykl( a, e )  using their 
orthogonality when inverting the resulting equations for the expansion coefficients ( I ) .  
As the harmonics Yzo and Y2,  satisfy 

it is necessary for the right-hand side of (16) to be orthogonal to Y,, and Y2, for this 
procedure. Bartlett (1937) showed numerically this was not the case, and hence the 
physical solution requires logarithmic terms. The integrals required for the analysis 
have been evaluated analytically in I and by Ermolaev (1961). 

It is possible to solve (16) by another procedure. Pluvinage (1982) solved the 
equation 

[A2-12]f=8Y21 (17) 

using the solutions to the homogeneous equation and the method of variation of 
parameters to give, in hyperspherical coordinates, 

COS e 
4 sin a 

(Y cos a (1+2 sin' a )  cos e 
4 sin' a 

f =  -- + 

Further details are given in appendix 1. Note that if orthogonality was applied to (17) 
one would conclude that no well behaved solution exists. The derivative of solution 
(18) is clearly singular at a = 77/2 and, to be rigorous, solves (17) in the region with 
a = 0 excluded, and so no contradiction arises. 

A distinction must be made here between these two approaches. The first method, 
i.e. the true hyperspherical technique, requires the orthogonality property of the H H 

and chooses the physical solution readily. This is due to the property of the harmonics 
which are, by definition, finite, continuous and infinitely differentiable. The variation 
of parameters method, applied above, uses hyperspherical coordinates but does not 
use orthogonality of the H H .  Although this is able to solve equations which the true 
hyperspherical method cannot, it introduces functions with non-physical behaviour. 

It is well known that the orthogonality method selects the physical solution, 
automatically rejecting singular solutions such as (18). As shown in 9 4, however, the 
compact form of the wavefunction is derived far more readily via the singular solutions 
to (4) with which singular solutions to Laplace's equation are combined in amounts 
such that the divergences cancel. Because expressions can be generated in a near to 
reduced form the method is more convenient than the hyperspherical approach. The 
technique is hinted at by Pluvinage (1982) who solved the Fock recurrence relations 
( I )  via region-dependent expansions similar to (13). By satisfying the boundary 
conditions with the addition of functions such as (18) to the particular solutions, he 
obtained expressions for helium nsms ' S  and nsms3S  states in the simplest form 
available at that time. 

3. Solutions of Laplace's equation 

The method described below differs from that of Pluvinage (1982) in that logarithmic 
solutions to Laplace's equation are also considered. 
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3.1. Separable series solutions 

Homogeneous S-state solutions, of degree k, to 

AQk=O 

are sought. Initially separable solutions of the class 

Qki=rkQki(a, 8 ) = r k A k r ( a ) @ , ( e )  

where 1 is a degeneracy label, are examined. Substitution into (19) yields 

and 

-+2cot a---+$k(k+4) a 
aa sln- a 

Equation (20) is a standard differential equation, its solutions being Legendre poly- 
nomials of the first and second kinds: 

P,(COS e)  
= { Ql(cos 8 )  

(Abramowitz and Stegun 1972, ch 8). Only integral 1 and 13 0 are of interest here. 
Substituting 

x = cos a Ak/ = ( 1  -X2)”’Bk/ 

transforms (21) to 

ax 
[ ( 1  

This can be expressed in hypergeometric form, setting z = ( 1  i. x ) / 2 ,  to give 

The two linearly independent solutions are 

and 

-k/2 -4, k/2 + 
’ 2  B k , ( x )  = zF1 [ I - 1 

Note that there are no  logarithmic solutions to (23) (Rainville 1960, p 54). For even 
k and 1 - k/2 3 0 the first solution (24a) is proportional to a Gegenbauer polynomial 
(Rainville 1960, p 279) 

I-( k/2 - 1 + 1)r(21+2) c,+, 
k , 2 - / ( F  x ) .  r( k/2 + 1 + 2 )  
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Since ( 1  + x ) / 2  = r t / r 2  and ( 1  - x ) / 2  = r : / r 2  the Akl can be written 
I - k /2 ,1+ k / 2 + 2  ; r ; / r ' ] (? )  I  

k / 2 -  I +  1 , -k /2-  I - 1 
A k / =  

where Euler's transform (Abramowitz and  Stegun 1972, equation 15.3.3) was applied 
to (24b) ,  and a factor of 2' is discarded for convenience. It is useful to express these 
in the coordinates from 11, via equation (17 )  of that paper. Restricting attention to 
rl > rz and i = 2 gives 

where y = 2r, r2/ r2 = sin C Y .  Noting that cos CY = ( r :  - r : ) /  r2 ,  another useful (antisym- 
metric) form for these functions, obtained with the assistance of Euler's transform, is 

Expression ( 2 5 )  may also be transformed to (Abramowitz and Stegun 1972, equation 
15.3.23) 

1+;  

- k / 2  - I - 1 ,  -4- k / 2  
Akl = 

where p = r J r ,  and r< = min( r l ,  r z )  and r ,  = max( r l ,  r z ) .  Setting i = 1 or r l  < r2 yields 
the same functions, so (25) - (27)  represent the full set of solutions. When k is even 
and I >  k / 2 ,  (27a)  is an  infinite series. The second series (27b)  is always finite. The 
H H  Ykl(a, 0 )  are reproduced, to within a numerical factor, using ( 2 5 a )  or ( 2 6 a )  and 
P,(cos 0 ) .  Some examples of these Qkl are given in table 1 .  Q' represents solutions 
Akl of the first kind ( 2 5 a )  and Q" represents (256) ,  both combined with Pl(cos e ) .  
From ( 1 5 ) ,  (22)  and ( 2 7 a )  it is seen that the contribution due to c k - l / l  in (13)  is 

/=o  

That is, c k - / / /  multiplies a solution to Laplace's equation. 

3.2. Separable logarithmic solutions 

Simple logarithmic solutions to Laplace's equation can be generated assuming an  
expansion of the form 
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where m is arbitrary. Substituting this into Laplace’s equation (19 )  gives equations 
for f$kp  similar to the Fock recurrence relation, 

[A2 - k (  k + 41 d k p  = 2( k + 2) (  P + 1 ) f$kp+ I  + ( P + 1 ( P + 2) f $ k p + 2 .  (29 )  

Although the limitation to finite m is not immediately obvious, this is necessary to 
solve ( 2 9 )  in order of decreasing p. For the purpose of this analysis there is in any 
case no point in choosing m larger than [ k / 2 ] .  As an example, suppose m = 1, k = 2. 
Putting p = 1 in (29 )  gives 

[A2-  121421 = O .  

If the solutions Y2, ,  I = 0, 1 are chosen, putting p = 0 gives 

[ A2 - 121420 = 8 Y2,. 

This was solved previously ( ( 1 7 ) ,  (18)) for I =  1. The solution for 1=0 (appendix 1 )  
yields 

[Yz0 In r +aQ& sin-’ y 

r4 
8r1 r2 

Y 2 ,  In r+&Q:’, sin-’ y -- cos 8. @2’ = 

Note that these are well behaved as r I  + 0 and r2 + 0. 
In general however the solutions to Laplace’s equation described so far are not 

sufficient to help solve the equations ( 4 ) ,  since the solutions required cannot be 
expressed as finite sums of separable functions of r, a and 8. Presumably these could 
be described as infinite series of separable solutions, but the objective in this paper is 
to avoid such expressions when solving few-body equations. 

3.3. Non-separable logarithmic solutions 

As is evident when comparing Pluvinage’s, Scherr’s and Hylleraas’s expressions ((6),  
(10) and ( 1  1)) with the physically acceptable wavefunction (equation (42 )  of II), the 
latter must be composed largely of non-separable solutions to Laplace’s equation. It 
is easy to find three homogeneous solutions of degree zero, namely 

s l ( r l r  r2 ,  r I 2 )  = In[r, ,(2r2- r :2 )”2+  r : -  r i ]  

and 

-In[ r 1 2 ( 2 r 2  - r:2)”2 - r:+ r i ] )  

+ 2 [ L( y) - L( y ) + L( ?r - ; + P )  - L( ?r - ; - ”) 1 
where a =sin-’ y ,  P = sin-’(yR), in addition to the simple 

where fl =cos 8 at this stage. The region in which s I  and s2 satisfy 

A s = O  (30) 
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requires careful study. sI solves Laplace’s equation as long as both sI and its first 
derivatives are not singular, i.e. at ( r l ,  r2, r I 2 )  = (0, 0,O). Hence symmetric and antisym- 
metric solutions may be constructed as 

( 3 1 )  STr = Sl(rl, r2, r12) * sl(r2, rl, r12). 

However, s2 has the property 

Thus the symmetric or antisymmetric solutions, valid everywhere except at the singular 
points, are 

An infinite number of solutions to Laplace’s equation can be produced from S, 
and s2.  This can be achieved by multiplying these functions by the harmonics Ykl or 
by Q k l r  producing a homogeneous solution of degree k. The notation s j k . ’ ]  is used to 
denote a solution to Laplace’s equation based on multiplying s, by Yk(. To be consistent 

s[o.ol = , SI. 

Note that functions based on Qkl do not seem to be required. 

inspection from equation (42)  of 11: 
The following solutions of degree two of ( 3 0 ) ,  valid for r l >  r2, are found by 

( 3 3 a )  

( 3 3 b )  

(33c )  

sysL1(rl ,  r2, rI2)  = yZ1s2(r l ,  r2, r l z ) + 2 ~ z o  In r - 4 r l r 2  sin-ly. ( 3 3 d )  

Symmetric solutions valid in the whole space except for specified singular points are 
constructed from these using ( 3 1 )  or (32 ) .  

In order to obtain solutions to equations ( 4 )  in closed form, a systematic method 
of producing the necessary solutions to Laplace’s equation is desirable. The authors 
are not aware of any general method which enables the desired solutions to be selected 
from the uncountably infinite ensemble of solutions. However it is possible, through 
careful study of the equations (4 ) ,  to derive the additional set of solutions with the 
required properties. Hopefully this will facilitate the systematic selection of the desired 
functions without the need of solution by expansion. 

Once archetypal solutions have been found it is easy to extend these to the infinite 
set of similar functions. It is convenient to define the homogeneous polynomial of 
degree k with coefficients a, 

2 1/2 s[,2301(rl, r2, TI*)  = y2osl(rl, r2, r12)-2~12(2r2- r12) 

s[12”1(rl, r2, f-12) = y2lSl(rl, r2, r12) 

syqol(r , ,  r2, rI2) = Y 2 0 ~ 2 ( r l ,  r2 ,  r I 2 )  + 8 Y Z l  In r + 4 r 1 2  sin-’(yCl)(2r2 - r:2)1’2 

To generate solutions to (30) of degree 4 based on s1 and s2 the functions 

~ [ , ~ ~ ’ ] ( r , ,  r2, r12) = Y4,s1(r1, r2, r I2 )  + (2r2 - r ; 2 ) 1 ’ 2 ~ f  + P,“ ( 3 4 0 )  
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Table 2. Non-separable solutions to Laplace’s equation, r l  > r , .  

and 

with 1 = 0, 1 or 2, are proposed. The form of these functions was suggested by (33 ) .  
The coefficients in the polynomials may be determined simply by requiring (34a) or 
(34b) to solve Laplace’s equation. Functions obtained in this way are listed in table 
2 .  Although other solutions can be generated using other Qkl in place of the Ykl in 
(34), these are not listed here. 

4. Boundary conditions 

The physically acceptable solutions are to be determined from a particular solution to 
equation (4) and the relevant solutions to Laplace’s equation. This requires the use 
of the homogeneous functions Q k ,  specified by the differential equation (4), to satisfy 
the boundary conditions of continuity and  finiteness of the eigenfunctions for finite 
values of the independent coordinates. The method is exactly analogous to a well 
known technique for solving ordinary differential equations. Having found a particular 
solution the boundary conditions specify the amount of the homogeneous solutions 
which must be added to eliminate the singularities. The objective of producing closed 
form solutions is hindered if it is necessary to manipulate series solutions to the 
equations. A large set of equations can be solved while still avoiding expansions, as 
shown below. 

It is well known (Fock 1954,1958) that, for even k, qk contains ( k / 2  + 1) coefficients, 
denoted akl ,  which for bound states are determined by ensuring the wavefunction is 
normalisable at r += CC. The notation in I requires extension for this work. While in 
Pk the coefficient akl multiplies the harmonic Ykr ,  the physically acceptable propagation 
of akr in WK is denoted by W[,“.’] .  These are solutions of 

( 3 5 )  ~ q [ k . l l  = 2 vq[A.ll - 2 ~ q [ k . l z ] .  
K - I  I(- 

To be consistent 
q [ k . l I  = 

A yk l  

and 

K < k. y [ k . l l  = 0 
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These functions are further subdivided into particular and complementary solutions 
of (35) 

q [ k / l  = p q [ k , l l +  c y [ k l l  
u K I C .  

The complete contribution of the coefficient a k l  to the wavefunction is 

u = k  

and the total wavefunction is the sum 

Particular eigenstates are chosen by setting certain a k l  to zero. For example 

k ’ = O  a00 f 0 + nsms IS 

k ‘ = 2  + nsms 3~ 

k ’ = 2  + npmp ‘S. 

a,, = a,, = 0, a,, f 0 

a,, = a,, = 0, a21 f 0 

as explained in I .  Comparison with the series of homogeneous functions of degree k 
(3) 

implies that 

Using the functions and procedures described in this paper, finding the contribution 
of a k /  to q k + 2  in closed form is straightforward. The use of these methods is demon- 
strated by their application to the nsms IS states to second order, and to the nsms ’s 
and npmp IS states to fourth order. These were tabulated to first and third order 
respectively in I .  

An infinite number of particular solutions for the multivariable equation exist, as 
indicated in § 2. The approach here is to commence with the simplest particular 
solution available, which is then modified by adding appropriate amounts of solutions 
to the homogeneous equation, as given by Hylleraas (1960) (1 1 ) .  In keeping with the 
approach in I and I1  a more general potential is chosen, namely 

PI P 2  P I 2  

rI r2 r12 
V = - + - + - - .  

A particular solution for nsms IS may be found by proposing 

p ~ y * o l =  P: I n ( r l + r 2 + r 1 2 ) + ~ t  1 n ( r l - r 2 + r , 2 ) + ~ i  rl > r2 .  

Substitution into (35) determines the coefficients. The calculation is reduced by noting 
that the logarithmic terms do not appear in !PI. Using (A2.1) Pz and P: must both 
satisfy 

AP2 = 0. 
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To ensure that 
of solid harmonics, 

is finite at  the origin these polynomials must be linear combinations 

boY20+ bi Y2i. 

Particular solutions for other states, found in the same way, are 

P q q . 0 1  = - i w 1 2  1n(r1 + r2+ r12)(pA yZ0- ~ P ~ Y ~ ~ )  - ipI2 In(rl - r2+ rl2)(ps Y20 -  PAY^^) 

- ~ E r 2 + + p 2 r l r 2 ( 3 ~ I  - p 1 2 )  + &d2(2p;+  2 ~ : +  p*. :2)  

+3P12r12(Plrl+ CL2r2) + a20Y20+ a21 y21 

P q q O I  = - 1 
9 0 p  I 2  In( rl + 1 2  + r l  2 ( 1 OP.4 y40 - 2 1 PS Y4l + 4OP.4 Y42) 

- &P I 2 ri - r2 + ri 2) ( 1 OPs y40 - 2 1 P A  y41 40 Fs y42) 

- M 2 ( r ;  - r:, +hPl2r12(Pd -P2~:)+3PI2r:2(Pl~l- CL2r2) 

- g r l r 2 ( ~ :  - p:)  + &rf2( r: - r;)( lop? + lopi + 3 ~ : ~ )  - $p12pI r:rI 

+ b 1 p 2 r 1  r2( r 1 - ~ 2 )  - i w 1 2 ~ 2 r l  r2( 1 2 6  - 5 r L  - 2 r 3  

1 2 2  

2 2 2  

29 _ -  
15P 12 r12 r1 r2( P I r2 - P2 r1 ) 

+ a40 y40 + a41 y41 + a42 U42 

and 
P q + u l =  r 

18oP12  1n(r1 + r2 + r12)( 1oPs y40 - 21 PA y41+4oPs y 4 2 )  

+ &PI 2 In( ri - r2 + ri 2 )  ( 1 OP A y40 - 2 1 Ps y41 ~OPA y42) 

+&E(3r2rt2 - 16r:r:) -&(pi + p:)(3r2ri2 - 10rfri) +$j~:~(p: + p i )  

-3b:2(r2r:2 - 6r:r:) + & ~ l 2 r l 2 ( ~ ~ r :  + ~ 2 r 3  - + ~ ~ 2 r ? 2 ( ~ ~ r ~  + ~ 2 ' 2 )  

+ E  
+ $ P I ~ P I ~ : ~ : + ~ P u I ~ ~ ~ I  rz(r2 - r ;2)  -i15P12P2ri r2(12r: - 5r:2 - 2r:) 

3 0 ~ 1 2 r 1 2 r 1 r 2 0 ( 1 . 1 r 2 +  PCLzrI) + a40Y40+ a41 y41 + a4zY42. 

These are valid for r1 > r2. The expressions valid for rl < r2 are obtained by interchang- 
ing rl with rz, pl with p2 and a, with a ;  (Gottschalk and  Maslen 1985). For the 3S 
state the expression for rl < r2 is also multiplied by -1. 

The non-physical behaviour of these functions is now examined. Consider the 
function pW\Iro301. It is easily verified that 
aPqfIr[o.ol -AI aPqf[O.OI +I ar,  .,+ 

=2r2(2a20+2a;o+a21 - a ; l ) + f ~ 1 2 r 2 ( ~ l  - P ~ ) - % L ~ ~ P ~ ~ ~  In rI2 (37a) 
and 

PW\o.O1(rl -* r:) - P ~ \ V o . O l ( r l  + r;) 

= -(a21 - a ~ l ) ( r ; 2 - 2 r i ) + + ~ ~ 2 r i ( ~ ~  - ~ 2 )  

- + ~ ~ 2 ( ~ ~ - ~ 2 ) ( r : ~ - 2 r i )  In rI2.  (37b) 
The logarithmic singularities are removed by subtracting the homogeneous solutions 
with equivalent behaviour. Note that Pluvinage's (1950) power series solution contains 
such logarithmic singularities. In general the complementary expressions (equation 
(33), table 2) do not have the correct behaviour. Linear combinations of these functions 
are required. When examining the behaviour of the complementary solutions at rl = r2 
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it must be remembered that sin-' y has discontinuous derivatives with respect to r l  
and r2. The following equality is helpful in avoiding errors: 

sin-' y = 2 tan-' p. 

The In r I2  terms in (37) are eliminated completely using the complementary solutions 
listed in (33). Cancellation of the remaining polynomial terms relates a io  to a,, and 
a; ,  to u , ~ .  The wavefunction is still not in the form of (36), however, due to the 
presence of a, multiplying Y, for rl > r2 and  ab multiplying Y,, with rl interchanged 
with r2 for rl < r2. To obtain the required form (36) it is necessary that a, = * a b ,  
depending on the symmetry of the wavefunction and  Yl,. This is easily achieved using 
the relation between a ,  and ah to add the required amount of H H .  The physically 
acceptable WY9O1 is now completely determined apart from terms proportional to a,,, 
and Evaluation of these coefficients would require knowledge of the asymptotic 
form of the wavefunction. The behaviour of the reduced function for various values 
of rl ,  r2 and rI2 was examined in 11. 

Since determination of W&2,01 and W&2.l1 follows that for WY*'] only the results are 
presented. These have not been derived previously. 

nsms IS :  9 = a,,( yo, + W[,O,O] + wY.") + a,, y2, + az l  yZl + o( r 3 )  
q [ O , O I  = 

u'50.01= -1 
1 Pl r1+P2r?+~Pl* r I*  

6 p 1 2  I n (  r l  + r2 + r 1 2 ) ( p A  y20 - 2pS y21) + : P I 2  In( r l  - r2 + r12)(211.A y21 - pS y20) 
1 

- &p 1 2 ( 1 - s2) (2/-( A y2 1 - k S y20) + z p I 2 1 n ( P A  y20 - 2 P S y2 1 ) 
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Pluvinage's (1950) (8) and Scherr's (1979) (10) expressions can be related to W\"."] 
by adding solutions to Laplace's equation. These are obtained by subtracting their 
functions from the physical solution. 

5. Extension to higher orders 

It is expected that the procedure for finding Wi$y in closed form described in § 4 will 
extend to the higher-order components of the wavefunction, .\v?" where K > k + 2. 
Information helpful to this extension can be obtained by examining the spherical polar 
representation outlined in § 2.2. The complete formulation in these coordinates is 
given by Gottschalk and Maslen (1985) and is based on the expansion 

where p ,  12 0, j k 1 and k = i + j  3 0. The p ! factor achieves a mild simplification of 
the recurrence equations. This expression for the wavefunction is related to YU[,",'] in 
(36). The expansions and equations determining the coefficients C,, and Cklp of 
also apply to WU[,".']. The equations for C,,, and CL/,, are similar to those in § 2.2 for 
C,// and Ckl to the extent that there is no need to reproduce them here. 
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Consider first .\v[,"*'] for odd K and K 3 k + 3 .  The recurrence equations for C,,,, 
and CL,, obtained by substituting (38) into equation ( 3 5 ) ,  specify all the coefficients 
apart from c k - l , l O  and C ~ _ r f r o .  These are determined by the continuity and derivative 
continuity requirement. As already noted in (28), each multiplies a separable series 
solution to Laplace's equation. This indicates that once a particular solution of (35), 
pY\yzukqll, has been found, the complementary solution c*\yzuk%'l required to satisfy the 
boundary conditions can, if necessary, be expanded as a sum of the separable series 
solutions to Laplace's equation. 

For .\U[,".'] with even K and K 3 k + 2 ,  application of the boundary conditions requires 
more complex solutions to Laplace's equation. An additional logarithmic term is 
needed. That is, if the highest power of In r in Wr[,"L'i is p then *?'I requires (In r ) p t l .  

This is well known and the required complementary functions cY\y[uk,ll were derived in 
closed form in § 4 for K = k + 2 .  If a systematic method for producing the non-separable 
logarithmic functions in reduced form is not available, solution by expansion will be 
necessary. Note, however, that the work completed so far suggests that compact 
expressions will exist in the cases of interest. Pluvinage (1985) used the independent 
coordinates 

where r and a were given previously ( l ) ,  and p = sin-'(yR). He wrote Yy.ol in terms 
of trigonometric functions of ( r ,  6, T ) ,  logs of these trigonometric functions and integrals 
of these logarithms. The latter corresponds to Lobachevskiy's function. This is reason- 
able since differentiation of each produces the preceding class of function. Lobachev- 
skiy's function is expressible in terms of the Clausen function, Cl,(x), or the dilogarithm, 
Li,(x) (Lewin 1958) 

r = ( r ; +  r;)''* t = f b  - P )  7 =$(7 r -a -P )  

L( 7r/2* x)  = (7r/2 * x) In 2 * t  ~ 1 , ( 2 x )  

~m[~ i , ( e ' ' ) ]  = cl,( e). 
and 

It is thus reasonable to expect to encounter solutions to Laplace's equation related to 
the polylogarithm, 

6. Conclusions 

Wavefunctions can be written as infinite series containing homogeneous functions * k 

of degree k in the hyper-radius r, the remaining coordinates (hyperangles) being 
denoted here by R,  not to be confused with R = c o s  8 used above. Substituting the 
expansion into the Schrodinger equation gives a set of coupled differential equations 
for the wk. As k s 0  these may be solved in order of increasing k. The physically 
acceptable solutions are extracted by applying the appropriate boundary conditions. 
This procedure is applicable to a wide range of potentials and an arbitrary number of 
particles. It is a generalisation of the method developed by Fock who determined the 
form of the wavefunctions near r=O and expanded the homogeneous functions \ I r k  
into qkP(R)  

k 

p=o 
* , = r k  1 qkp(R) lnPr .  



Derivative continuity via Laplace’s equation 2799 

The common hyperspherical approach, proposed by Fock (1954, 1958), involves 
expanding both sides of the resulting differential equations into hyperspherical har- 
monics ( H H ) ,  followed by the use of orthogonality to invert the equation. The properties 
of the H H  ensure that the solution is valid for all finite r and does not contain any 
singularities. A major disadvantage of this method is the difficulty of reducing the 
series solution to its compact form. The method presented here reduces these difficulties 
by avoiding the Fock expansion and H H .  It is found that some particular solutions 
for Ilr, are simple functions. These solutions, although singular and  with discontinuous 
derivatives, are sought deliberately because of their simple form. As in the case for 
ordinary differential equations, the physically acceptable solutions are then formed by 
adding solutions to the homogeneous equation to the particular solution. The 
homogeneous equation is Laplace’s equation and the solutions required are logarithmic 
and not necessarily valid in all space. 

In the examples quoted, expansions are avoided. This may not be possible in all 
cases because of the complexity of the inhomogeneous term. In  such instances 
expansions which introduce discontinuities naturally, such as spherical polar coordin- 
ate expansions, are preferable to hyperspherical expansions because of the simpler 
form of the resulting series. 

To elucidate this procedure the three-particle Schrodinger equation with Coulombic 
potentials, of which helium is a special case, is examined. The closed form for nsms ‘ S  
states to second order is rederived and expansions are avoided. The result is consistent 
with earlier derivations in I and  11, based on expansions in hypersphericals and 
spherical polars, respectively. It is obtained far more efficiently by the new method. 
The nsms 3S and n p m p  ‘ S  states are determined in compact form to fourth order in 
I for the first time. The process can be extended straightforwardly to other doubly 
excited states using the results listed. 

Even if the required solutions to Laplace’s equation must be found by expansion, 
resumming the resulting wavefunction (in, say, spherical polar coordinates) will be 
much simpler than the use of H H  expansions for the complete problem. The 
homogeneous functions Ilrk naturally decompose into solutions to Laplace’s equation 
plus additional components due to the potential. As both parts are singular the H H  

expansions necessarily mix the two. The decomposition necessary to sum the series 
in H H  is far more difficult than solution by the present method. 
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Appendix 1.  Solution of [AZ-k(k+4)1F = Ykl 

Equations such as 

[ A ’ - ~ ( ~ + ~ ) I F ( ( Y ,  e ) =  Y,,((Y, e)  ( A l . l )  
where F ( a ,  0 )  = f ( a ) P , ( R )  and R = cos 8, arise in some cases. These are not solvable 
by the method of expanding f ( a  )P,(cos 0 )  into HH,  using their orthogonality to find 
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the expansion coefficients. The difficulty is that Ykl,  an eigenfunction of the differential 
operator on the left-hand side of (Al . l ) ,  also appears on the right. This may be solved 
by the method of variation of parameters as discussed below. 

From equation (1 1) in I 

ae a ae 7 a 
(a: aa 

A'( CY, e)  = -4(sin - sin' CY-+ (sin e)-' - sin e- . 

Noting that 

a a a  2 8  (sin e)-'-ssin e -==( I -O  )- ae  ao an an 
and 

a a 
-(1 -n2)-Pl(n) = - l ( l +  1)Pdfl) an an 

it is found that 

A ' f ( a ) P , ( n )  = -4(sin f ( a ) P / ( n ) .  (A1.2) 

Orthogonality of the Legendre polynomials is used to reduce equation (Al . l )  to an 
ordinary differential equation, 

1 1  a 
- - l ( I + l )  + k ( k + 4 )  f ( a ) = Z ( a )  (A1.3) 
aa 

where I ( a )  can be obtained from table 1 and either ( 2 5 a )  or (26a), depending on the 
symmetry of Yk,. Solutions to the homogeneous equation are given by (25a) and 
(256), and (A1.3) is solved by the method of variation of parameters (Boyce and 
DiPrima 1977, p 121). 

As an  example consider k = 2 and I = 0, where 

Z ( a ) = 2 c o s a  

and the two independent homogeneous solutions are 

y ,  = cos CY y ,  = 2 cos(2a)/sin a. (A1.4) 

In this case the Wronskian is - (8  sin' CY)-' and a particular solution to (A1.3) is 

a cos(2CY) 
f ( a ) =  1 6 s i n a  * 

The corresponding solution to (Al.1) is 

F (  a, 6) = &Q:;( CY, e) .  

(A1.5) 

The case of k = 2 and 1 = 1 has already been calculated by Pluvinage (1982) (18) with 
the solution of ( A l . l )  being 

The result (A1.5) is implied in the work of Fock (1954, 1958). It can be shown 
that a suitable linear combination o f f  and y ,  (A1.4) yields the (generalised) Green 
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function for the differential equation ( A l . 1 ) .  Fock gave these Green functions for 
k 3 0. The appearance of these is not surprising. The connection of Green functions 
to the method of variation of parameters is discussed by Whitten and McCormick 
( 1 9 7 5 ) .  

Appendix 2. Action of the Laplacian 

A s  only S states are considered the Laplacian reduces to 

a a  a a  a a 
ar ,  a r ,  dr,  ar,  a r , ,  a r , ,  

A = rT2-r i -+  r ~ 2 - r ~ - + 2 r ~ ~ - r ~ 2 - -  

a' 
1 2  cos er- + 2  COS e,- a2 

ar,  a r I 2  ar2 ai-,, 

with 

For the differential equations considered the Laplacian usually acts on products of 
functions. The action of the Laplacian can be derived from that for each term separately. 
The calculations are simplified and insight gained by use of the equation 

a f  a g  a f  dg a f  ag 
ar ,  a r ,  ar2 ar2 a r , ,  a r I 2  

A f g = f A g + g A f + 2 - - + 2 - - + 4 - -  

+ 2  cos 

Consider, for example, 

A ( f g + h ) = e .  

If AA Ah, e and a g / a r i  d o  not contain g ,  then from ( A 2 . 1 )  f must satisfy Laplace's 
equation, 

Af  = O .  

Usually this implies that f is a finite series solution, i.e. Q' or Q" from table 1. Invoking 
this reduces the calculations. It also explains why the HH multiply special functions 
for many terms in qk. The Q" option can often be ignored as these are singular as 
r ,  or r2 + 0. However they may be present if multiplied by appropriate functions. For 
example 

Q:b sin-' y 

is well behaved at the origin. 
The action of the Laplacian on some of the more complicated functions is listed 

to assist the verification and extension of the formulae in this paper. All are valid for 
r ,  > r2: 

1 + R  ( r ; - r : )  
A f l  = 4 ln( -) - 

1 - R  r 2 r l r 2  
f, = sin-' y In( G) l + R  
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